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Abstract: In this article, Hill Climbing (HC) and Estimation of Distribution Algorithm 
(EDA) are integrated to produce a hybrid intelligent algorithm for design of endlessly 
Single Mode Photonic Crystal Fibers (SMPCFs) structure with desired properties over the 
C communication band. In order to analyzing the fiber components, Finite Difference 
Frequency Domain (FDFD) solver is applied. In addition, a special cost function which 
simultaneously includes the confinement loss, dispersion and its slope is considered in the 
proposed optimization algorithm. The results revealed that the proposed method is a 
powerful tool for solving this optimization problem. The optimized PCF exhibits an ultra-
low confinement loss and low dispersion at 1.55 µm wavelength with a nearly zero 
dispersion slope over the C communication band. 
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1 Introduction1 
With the advent of the photonic crystal materials, a new 
concept in fiber optics called Photonic Crystal Fiber 
(PCF) has come to forefront in fiber research. One of 
the most promising applications of photonic crystals is 
the possibility of creating compact integrated optical 
devices with photons as the carriers of information, and 
then the speed and bandwidth of advanced 
communication systems can be increased dramatically. 

Usually PCF are all pure silica fibers with a regular 
array of air-holes running along the length of the fiber 
acting as the cladding. A defect in the periodical 
structure acts as a core. PCFs possess dispersion 
properties significantly different from those of 
conventional fibers, for example: endless single-mode, 
ultra-flattened dispersion, and super-continuum 
generation [1-3]. 

Control of dispersion, dispersion slope and losses in 
PCFs is very important problem for realistic 
applications of optical fiber communications. Several 
designs for the PCF have been proposed to achieve the 
ultra-flattened dispersion properties. By varying 
different parameters of the photonic crystal fibers, such 
as the pitch (Λ) of the periodic array, the holes radius 
(r), the number of air-hole rings (N) and the refractive 
index (n), one can engineer the electromagnetic modes 
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supported by the photonic crystal fibers and explore 
suitable properties for many practical applications. 

The optimization of PCF design is often difficult due 
to the fact that the optical properties do not usually vary 
in a simple way with the fiber geometry parameters. The 
optimization problem of PCF gets more and more 
difficult as the numbers of variables {Λ, r, N, n} and the 
number of fiber properties that should be considered 
(chromatic dispersion, slope of this dispersion, 
confinement loss, etc…) are increased. The design 
optimization is usually performed by trial and test 
approach. However, this is a time consuming approach, 
both for the computer and the designer. In recent works, 
heuristic optimization algorithms have been shown to 
offer a convenient platform for the solution of the 
optimization problems [4-9]. 

Hill Climbing (HC) is a technique for certain classes 
of optimization problems. The idea is to start with a 
sub-optimal solution to a problem (i.e., start at the base 
of a hill) and then repeatedly improve the solution (walk 
up the hill) until some condition is maximized (the top 
of the hill is reached) [10]. On the other hand the 
Estimation of Distribution Algorithm (EDA) offers 
another technique in which a probability model 
characterizing the distribution of excellent solutions 
[11]. This paper proposes a combination of HC and 
EDA (HC/EDA algorithm) to solve the optimization 
problem and to determine the parameters of PCF 
structure. 

Consider that the chromatic dispersion is a key 
parameter for many applications, this study is focused 
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on the determination of the PCF structure that can lead 
to the minimum dispersion and nearly zero dispersion 
slope over C communication band. In addition, the other 
significant parameter, the confinement loss is optimized 
simultaneously. Therefore, two dimensional finite 
difference frequency domain (2D-FDFD) method is 
applied to determine the effective index of propagation 
of mode which then enables to ascertain the dispersion 
properties of PCFs structure [12-15]. 

This paper is organized as follows: In the next 
section, the fiber geometry structures and problems 
associated with the optimizing fiber structure are stated. 
This is followed by section 3, in which the principles of 
HC/EDA algorithm will be described. Section 4 will 
focus on the simulation results, analysing and making 
comparisons with similar works carried out in this field. 
The paper sets out its conclusion in section 5 and finally 
the trend for future research works will be pointed out in 
the last section. 
 
2 Fiber Design and Optimization 

At present, the design and optimization of Photonic 
Crystal fibers is still an area of active research [16]. As 
shown in Fig. 1, all the air-holes in the section of typical 
PCFs are arrayed according to triangle regularity with 
identical pitch Λ, spacing of the neighbouring air-holes. 
The scale of the air-holes is denoted by r of its radius. 
Background is pure silica. Because the effective 
refractive index of the core region is higher than the 
cladding region, total internal reflective (TIR) can occur 
in the interface between the core and cladding. 

Two major issues of the PCFs designing are 
chromatic dispersion and confinement loss which are 
explained in the followings. 

PCFs possess the attractive property of great 
controllability in chromatic dispersion. Controllability 
of chromatic dispersion in PCFs is a very important 
problem for practical applications to optical 
communication systems, dispersion compensation, and 
nonlinear optics. So far, various PCFs with remarkable 
dispersion properties have been investigated 
numerically. 
 
 

 
Fig. 1 Schematic representation of a typical PCF. 

A mode of a PCF is characterized by the mode’s 
field pattern and its effective indices neff = β/k0, where β 
is its propagation constant and k0 = 2π/λ is the free 
space wave number. Because of the finite transverse 
extent of the confining structure, the effective index is a 
complex value. 

The chromatic dispersion D of a PCF is easily 
calculated from the effective index of the fundamental 
mode neff versus the wavelength using 
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where nm(λ) can be estimated by using the Sellemeier’s 
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When the holes diameter to pitch ratio (d/Λ) is very 
small and the pitch is large, the dispersion curve is close 
to the material dispersion of pure silica. As the air-hole 
diameter is increased, the influence of waveguide 
dispersion becomes stronger [18-19]. 

Confinement loss is an additional form of loss that 
occurs in single-material fibers and it reflects the light 
confinement ability within the core region. When the 
optical mode propagates in the core region, one must 
take into consideration that the number of layers of air-
holes is finite and leaking light from the core to the 
exterior material occurs through the bridges between 
air-holes, resulting in confinement loss. Confinement 
loss L, in units of dB/km, is calculated as follows: 
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where Im(neff) is the imaginary part of the refractive 
index [20]. This confinement loss can be reduced 
exponentially by increasing the number of rings of air 
holes that surround the solid core, and is determined by 
the geometry of the structure. 

As mentioned in the previous section, FDFD method 
combined with HC/EDA algorithm is used to optimize 
the fiber’s profile as well as to accurately determine its 
modal properties. The simulation study was carried out 
with the database consisting of 530 individuals. Every 
individual has 4 features which are fiber parameters 
including pitch (Λ), number of air-hole rings (N), 
refractive index (n), and air-holes radius (r). 
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The logical constraints are considered in the 
optimization process. The refractive index range of 
silica is 1.44 ≤ n ≤ 1.46. In the structure, the air-hole 
diameter changes between 0.25  Λ and 0.45 Λ. In fact, 
unlike conventional fibers, triangular PCFs can be 
designed to be endlessly single mode (ESM) that is to 
support only the propagation of the fundamental mode 
whatever the wavelength and the pitch value. From the 
previous works [8-9, 21], d/Λ is chosen less than 0.406 
to guarantee single mode operation of PCF design. 
Furthermore, the lattice constant or pitch might be set to 
any value (microns). The value of lattice constant limits 
the value of the radius of particular air-hole. The radius 
should be lower than the half lattice constant as, 
mathematically, the diameter cannot be greater than the 
pitch and neither can it be equal to this value because 
the silica would cease to be continual. Here, the pitch 
varies in the range of 1.5 µm to 3 µm. Also the number 
of air-holes rings is selected between 5 and 9. 

The characteristics of the individuals chosen here are 
dispersion (D) and its slope (S) in the wavelength range 
from 1.53 μm to 1.565 μm (C communication band). 
These characteristics are calculated using the set of 
parameters {Λ, r, N, n}. The optimization problem is 
now considered as; 

( ) min f x              (5) 

where f(x) is a real-value function which has to be 
minimized to find the best solution. So, it is needed to 
define the preferred cost function for the proposed 
algorithm. Here are three kinds of cost functions: 
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As it can be seen in the first case, dispersion is 
minimized and in the second case, both dispersion and 
dispersion slope are minimized while in the third one, 
dispersion, dispersion slope and confinement loss are 
minimized simultaneously. 
 
3 Design Strategy 

Heuristic optimization algorithms, applied to inverse 
PCF design, involve a stochastic search for a globally 
optimal PCF structure provides the best performance of 
a PCF for a specific function. In this paper, an optimum 
design technique for PCF that utilizes an algorithm 
combining HC and EDA (HC/EDA) is proposed. 
Simulation results demonstrate that HC/EDA 
outperforms the other popular optimization algorithms. 
In this section, HC and EDA algorithms are explained 
briefly and then, the applied optimization algorithm, 
HC/EDA is explained in details. 
 

3.1  Hill Climbing 
Hill climbing is a greedy local search algorithm and 

can be used for optimization problems. Hill climbing 
algorithms can find reasonable solutions in large or 
infinite (continuous) state spaces for which systematic 
algorithms fail. Generally, when looking for a 
maximum of a function (optimization problem), the hill 
climbing algorithm works as follows: 

Step1: Start at an arbitrary point. 
Step2: Calculate values for neighbouring points. 
Step3: Move to the point with increased value. 
Step4: Terminate if no higher value could be found, 

otherwise continue at 1. 
The standard problem with this algorithm is that it 

may not find the optimal solution (i.e. the global 
maximum), but only a local maximum. However, with 
an extension known as random-restart one can increase 
the probability to find a global maximum considerably. 
Starting the hill climbing algorithm over and over again 
each time with randomly chosen initial states and saving 
only the maximum of the new values improves the 
probability of finding the global maximum. 

The hill-climbing algorithm is a local optimization 
algorithm. It can exploit the information about the 
current search point effectively. However, the search 
may be trapped at a local optimum [22]. 
 

3.2  Estimation of Distribution Algorithm 
EDA is a new class of GAs. EDA directly extracts 

the global statistical information about the search space 
from the search so far and builds a probability model of 
promising solutions. New solutions are sampled from 
the model thus built. Let Pop(t) be the population of 
solutions at generation t. EDAs work in the following 
iterative way: At first M promising solutions is selected 
from population Pop(t) to form the parent set Q(t) by a 
selection. Afterward a probabilistic model p(x), based 
on the statistical information extracted from the 
solutions in Q(t) is built. In the next step, new solutions 
according to the constructed probabilistic model p(x) 
are generated. Finally, new solutions fully or partly 
replace in the population Pop(t) to form a new 
population Pop(t+1). 

One of the major issues in EDAs is how to select 
parents. A widely-used selection method in EDA is the 
truncation selection. In the truncation selection, 
individuals are sorted according to their objective 
function values and only the best individuals are 
selected as parents [10]. Another major issue in EDAs is 
how to build a probability distribution model p(x). In 
EDAs for the global continuous optimization problem, 
the probabilistic model p(x) can be a Gaussian 
distribution [23], a Gaussian mixture [10, 24], a 
histogram [25], or a Gaussian model with diagonal 
covariance matrix (GM/DCM) [24] which is utilized in 
this work. 
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In GM/DCM, the joint density function of the k-th 
generation is written as follows: 
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In Eq. (9), the n-dimensional joint probability 
distribution is factorized as a product of n univariate and 
independent normal distributions. There are two 
parameters for each variable required to be estimated in 
the k-th generation: the mean μi

k, and the standard 
deviation σi

k. They can be estimated as follows: 
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where (x1,i
k , x2,i

k ,… xM,i
k) are values of the i-th variable 

of the selected M parent solutions in the k-th generation. 
 

3.3  HC/EDA Algorithm 
This hybrid algorithm combines a global search 

algorithm (EDA-Estimation of Distribution Algorithm) 
with a local search Algorithm (HC-Hill Climbing) in 
order to maintain a balance between the exploration and 
exploitation. 

The most important operation in this algorithm is to 
generate new offspring. Each offspring is sampled from 
the model built by the probability model. In the other 
word, EDA tries to guide its search towards a promising 
area by sampling new solutions from a probability 
model. The EDA mechanism is incorporated into the 
HC algorithm in order to find solutions which are more 
promising than solutions generated by the EDA, and 
consequently, to explore the search space more 
effectively [23]. The pseudo-code of HC/EDA 
algorithm is given as follows: 

Step 1: Initialize population: Randomly generate N 
solutions x1

0, x2
0,…, xN

0
 from the feasible search 

space to form an initial population, set k=0. 
Step 2: Perform Hill Climbing on the initial 
population. 
Step 3: Count fitness value for the initial population. 
Step 4: While Maximum_Generation ≥ k do: 
• Select the best M solutions from the current 

population, construct a probability model as 
Eq. (9). Here M is equal to the half of the 
population size. 

• Build a probabilistic model p(x) based on the 
statistical information extracted from the 
solutions in Q(t). 

• Sample new solutions according to the 
constructed probabilistic model p(x). 

• Fully or partly replace solutions in Pop(t) by the 
sampled new solutions. 

 

• For i=1 to Number of solutions do 
Perform Hill Climbing on New-Solutions 
Count fitness value for New-Solutions 
End for. 

• Merge the new chromosomes with old 
chromosomes. 

• Select fittest chromosomes from all the 
chromosomes as the next generation. 

End while. 
The ability and performance of this algorithm for 

optimization of the PCFs structure is presented in details 
in the following section. 
 
4 Implementation of HC-EDA Algorithm; Results 
and Discussion 

In this section the results of HC/EDA method in 
order to optimize the PCFs properties are presented. 
Also, the performance of this method is compared with 
the results of DE (Differential Evolution), EDA and 
DE/EDA methods. 

At the first generation, a population of “individuals” 
is randomly created, each individual being a possible 
solution to the problem. In the particular case of this 
paper, each individual corresponds to a particular design 
of PCF and has 4 parameters {Λ, r, N, n} which 
constitute the variables of the problem. The simulation 
study was carried out with the database consisting of 
530 individuals. These following steps are performed 10 
times: 

First of all 100 individuals are selected randomly. 
Then HC-EDA algorithm is applied to this selected 
population. In order to calculate the cost function, one 
needs to determine the PCFs characteristics over the C 
communication band. As mentioned in the previous 
section, FDFD method is applied to analyze the 
dispersion and loss properties of the triangular PCF and 
it has been one of the major tools for the analysis and 
understanding of PCFs. This evolution process 
continues until the number of generations is equal to a 
given maximum value (It is 100 in this case). In the last 
step, the ten best individual are selected and they put in 
the pool as the new population. Finally, a new 
population is created with 100 individuals. Again the 
proposed algorithm is performed with this population 
and the best individual with the minimum cost function 
is selected as the solution. In this case, the number of 
generations is made equal to 100. In order to make a fair 
comparison, the process is repeated several times for 
each cost function of these algorithms. 
 

4.1  Cost Function with Dispersion 
The first cost function is the summation of absolute 

dispersion over all λ (wavelength) in the specified 
wavelength range of optimization (C band). The results 
of the optimization are summarized in Tables 1 and 2. 
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Table 1 The solution (PCFs parameters) found by 4 methods 
with the first cost function. 

Method N Λ (µm) n r (µm) 

DE 9 2.5 1.44 0.4599 

EDA 9 2.077 1.449 0.4569 

DE/EDA 9 2.213 1.449 0.4596 

HC/EDA 9 2.18 1.449 0.4616 

 
 
Table 2 Dispersion values at 1.55 μm wavelength and 
dispersion slope over C band for the PCFs found by 4 methods 
with the first cost function. 

Method D 
(ps/nm/km) 

S 
(ps/nm2/km) 

EMF 
(μm2) 

DE 6.13 0.01729 58.85 

EDA 0.52 0.08893 7.69 

DE/EDA 8.17 0.03449 15.66 

HC/EDA 9.10 0.03470 14.73 

 
 

Table 1 shows the best individuals (solutions) 
achieved by the algorithms and Table 2 presents the 
corresponding dispersion characteristics. Also, the 
dispersion characteristics as a function of wavelength 
are depicted in Fig. 2. As it can be seen the minimum 
value of dispersion at 1.55 µm wavelength is for the 
PCF (best solution) achieved by the EDA method. 
Although the dispersion slope and the effective mode 
field area (EMF) are not intended by this cost function, 
but the best PCF found by DE algorithm has the 
minimum dispersion slope and the maximum effective 
mode field area. However, the hybrid algorithms; 
DE/EDA and HC/EDA yield approximately the same 
results. 
 

4.2  Cost Function with Dispersion and Dispersion 
Slope 

The second cost function is the summation of the 
absolute dispersions over all λ multiplied by the 
summation of absolute dispersion slope over all λ in the 
specified range of optimization. Tables 3 and 4 
summarize the results of the optimization. Table 3 
shows the best individuals achieved by the algorithms. 
The dispersion characteristics are depicted in Table 4 
and also in Fig. 3. It is obvious that overall the DE/EDA 
outperforms the other algorithms with this cost function, 
but the solution found by HC/EDA has dispersion slope 
characteristics superior than that of DE/EDA and also 
has a large effective mode field area. 

 
Fig. 2 Dispersion characteristics as a function of wavelength 
for the PCFs found by 4 methods with the first cost function. 
 
 
Table 3 The solution (PCFs parameters) found by 4 methods 
with the second cost function. 

Method N Λ (µm) n r (µm)
DE 9 2 1.45 0.386

EDA 6 2.618 1.442 0.4135
DE/EDA 7 2.713 1.44 0.3798
HC/EDA 9 2.574 1.46 0.3676

 
 
Table 4 Dispersion values at 1.55μm wavelength and 
dispersion slope over C band for the PCFs found by 4 methods 
with the second cost function. 

Method D 
(ps/nm/km) 

S 
(ps/nm2/km) 

EMF 
(μm2) 

DE -22.12 0.06808 18.41
EDA -11.12 0.03546 43.91

DE/EDA 0.25 0.02511 98.39
HC/EDA -4.76 0.01254 198.57

 
 

 
Fig. 3 Dispersion characteristics as a function of wavelength 
for the PCFs found by 4 methods with the second cost 
function. 
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4.3  Cost Function with Dispersion, Dispersion Slope 
and Confinement Loss 

In this case, the cost function is defined as Eq. (11). 
Tables 5 and 6 show the best individuals (best solutions) 
achieved by the algorithms and their characteristics 
respectively. The dispersion and confinement loss 
characteristics of the optimized PCFs are depicted in 
Fig. 4 and Fig. 5. It is obvious that overall the HC/EDA 
outperforms the other algorithms. 
 
 
Table 5 The solution (PCFs parameters) found by 4 methods 
with the third cost function. 

Method N Λ (µm) n r (µm) 

DE 9 3 1.46 0.6352 

EDA 9 2.989 1.46 0.6576 

DE/EDA 9 3 1.459 0.6407 

HC/EDA 9 2.919 1.453 0.6345 

 
 
Table 6 The properties of PCFs found by 4 methods with the 
third cost function at 1.55μm wavelength. 

Method D 
(ps/nm/km) 

S 
(ps/nm2/km) 

EMF 
(μm2)

L 
(dB/km)

DE 18.45 0.013428 25.07 2.1×10-7

EDA 20.86 0.01187 24.48 2×10-8 

DE/EDA 18.85 0.01285 24.98 1.25×10-7

HC/EDA 18.96 0.01143 23.43 1.28×10-8

 
 

 
Fig. 4 Dispersion characteristics as a function of wavelength 
for the PCFs found by 4 methods with the third cost function. 

 
Fig. 5 Confinement loss characteristics as a function of 
wavelength for the PCFs found by 4 methods with the third 
cost function. 
 

4.4  Discussion 
To summarize, we have shown that for this specific 

optimization problem, HC/EDA algorithm outperforms 
the other algorithms such as DE, EDA and DE/EDA 
algorithms when the optimization problem is the fiber 
with desired dispersion, dispersion slope and 
confinement loss . Although, there are some reports on 
the design and optimization of photonic crystal fibers, 
but most of the designed fibers do not provide single 
mode operation over the C communication band [26-
30]. A related work that has used the simple GA is done 
by Kerrinckx et al [4]. In this work each individual has 
two chromosomes {Λ, r} and the dispersion error is 
defined as cost function. The best solution reported by 
[4] is a 9 ring structure of PCF with the pitch 
Λ = 2.35 μm and the radius r = 0.33 μm. The dispersion 
and dispersion slope of this PCF are 2.5 ps/nm/km at 
1.55 μm wavelength and 0.03575 ps/nm2/km 
respectively. In another similar work the chromatic 
dispersion of 0.8 ps/nm/km at 1.55 μm wavelength has 
been obtained for a 9 ring structure with the following 
parameters: Λ = 2.59 μm and r = 0.29 μm [31]. 

In the proposed approach, a PCF with the dispersion 
of 0.25 ps/nm/km at 1.55 μm wavelength and dispersion 
slope of 0.02511 ps/nm2/km over the C communication 
band has been designed. In addition, a special cost 
function which simultaneously includes the confinement 
loss, dispersion and its slope is used in the proposed 
design approach. The optimized PCF exhibits an ultra-
low confinement loss in order of 10-8 and low dispersion 
at 1.55 µm wavelength with a dispersion slope of 
0.011 ps/nm2/km over the C communication band. So, it 
is revealed that HC/EDA method is a powerful tool for 
the optimum design of PCFs. 
 
5 Conclusion 

In this paper, a novel design technique using 
HC/EDA to achieve a SMPCF with desirable properties 
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is presented. The simulation results demonstrate that 
HC/EDA is an excellent method in optimization 
problem of PCF structure. The optimized PCF exhibits 
an ultra-low confinement loss in order of 10-8 and low 
dispersion at 1.55 µm wavelength with a dispersion 
slope of 0.011 ps/nm2/km over the C communication 
band. With further optimization of the structure and 
increasing the number of individuals' chromosomes in 
HC/EDA method, PCFs characteristics can be further 
improved. 

In further work, we are going to use Particle Swarm 
Optimization (PSO) and Gravitational Search Algorithm 
(GSA) for tackling this optimization problem. Also we 
will try to present the cost function using combination 
of dispersion, dispersion slope, confinement loss, 
bending loss and effective mode field area 
characteristics in order to design an optimum photonic 
crystal fiber. Furthermore, we will attempt to 
demonstrate that the number of the individuals' 
chromosomes (PCF parameters) can be increased to 
achieve the PCF structure with desired characteristics. 
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